Acta Cryst. (1997). C53, 299-301

(Benzoylacetonato-O, \mathbf{O}^{\prime})(2,2'-bipyridine$\left.N, N^{\prime}\right)($ nitrato- O)copper(II)

Li Zhang, ${ }^{a} \dagger$ Duansun Xu, ${ }^{a}$ Yuanzhi Xu ${ }^{a}$ and Jianming Gu^{b}
${ }^{a}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{b}$ The Central Laboratory, Hangzhou University, Hangzhou 310028, People's Republic of China

(Received 15 February 1996; accepted 4 October 1990)

Abstract

The $\mathrm{Cu}^{\text {II }}$ atom in the title complex, $\left(2,2^{\prime}\right.$-bi-pyridine- N, N^{\prime})(nitrato- O)(1-phenyl-1,3-butanedionato$\left.O, O^{\prime}\right)$ copper(II), $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, has a square-pyramidal coordination. Both the benzoylacetone anion and the $2,2^{\prime}$-bipyridine ligand chelate to the $\mathrm{Cu}^{\mathrm{II}}$ atom in the equatorial plane, while a nitrate anion occupies the apical site, with a longer $\mathrm{Cu}-\mathrm{O}$ distance of 2.335 (4) \AA. Within the delocalized enol ring of benzoylacetone, the $\mathrm{C}-\mathrm{C}$ bond closest to the phenyl ring is longer than the $\mathrm{C}-\mathrm{C}$ bond farthest from the phenyl ring.

Comment

The keto-enol tautomerism of 1,3-diketones has been extensively studied. For asymmetric benzoylacetone, enolization brings about two forms of cis-enol [forms (I) and (II)] which alternate quickly in solution via form (III), as shown in the scheme below (Gorodetsky, Luz \& Mazur, 1967).

(I)

(II)

(III)

[^0]An NMR study suggested that form (I) dominates in solution (Winter, Zeller \& Berger, 1979), while a neutron-diffraction study (Jones, 1976) and an accurate low-temperature X-ray study (Winter, Zeller \& Berger, 1979) indicated that within the delocalized enol ring, the $\mathrm{C}-\mathrm{C}$ bond farthest from the phenyl ring is slightly longer than the $\mathrm{C}-\mathrm{C}$ bond closest to the phenyl ring. The structure of the title complex, [Cu(bzac)(bipy) $\left.\left(\mathrm{NO}_{3}\right)\right]$ (where bzac is benzoylacetonate and bipy is 2,2'-bipyridine), (1), however, shows that the $\mathrm{C}-\mathrm{C}$ bond close to the phenyl ring is longer when benzoylacetone chelates to a metal atom.

(1)

The $\mathrm{Cu}^{\text {II }}$ atom has a square-pyramidal coordination, as shown in Fig. 1. A benzoylacetone anion and a $2,2^{\prime}$-bipyridine molecule chelate to the $\mathrm{Cu}^{\mathrm{II}}$ atom in the equatorial plane, with an average $\mathrm{Cu}-\mathrm{O}$ distance of $1.911(3) \AA$ and an average $\mathrm{Cu}-\mathrm{N}$ distance of 1.985 (3) A. A nitrate anion occupies the apical site, the $\mathrm{Cu}-\mathrm{O} 3$ distance of 2.335 (4) A being about $0.4 \AA$ longer than the $\mathrm{Cu}-\mathrm{O}$ distance in the equatorial plane. Both the enol ring (defined by atoms $\mathrm{Cu}, \mathrm{Ol}, \mathrm{O} 2$, $\mathrm{C} 2, \mathrm{C} 3$ and C 4) and the $2,2^{\prime}$-bipyridine ligand are highly coplanar with the $\mathrm{Cu}^{\mathrm{II}}$ atom, but these planes are inclined with respect to one another like an umbrella, the dihedral angle being 13.4°. The $\mathrm{Cu}^{\mathrm{II}}$ atom deviates by about $0.15 \AA$ from the mean plane defined by atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1$ and N 2 towards the apical direction. The $\mathrm{C} 4-\mathrm{C} 5$ distance of 1.494 (6) \AA suggests that this bond is a single bond and the phenyl ring of the benzoylacetone anion may freely rotate around it in solution. In the solid state, the dihedral angle between the phenyl and enol rings may depend on van der Waals contacts between neighbouring molecules. The dihedral angle of $22.9(1)^{\circ}$ for the present complex is different from the dihedral angle of 6° found in the structure of the free benzoylacetone molecule (Jones, 1976). The distance of 3.456 (7) \AA between the ClO and $\mathrm{Cl1}(-x,-y,-z)$ atoms indicates a van der Waals contact between the phenyl ring and the $2,2^{\prime}$-bipyridine ligand from the neighbouring molecule.

Within the enol ring of this complex, delocalization of the double bond is observed as reported for the free benzoylacetone molecule, but the C2-C3 bond distance of $1.376(6) \AA$ is significantly shorter than the C3-C4 bond distance of $1.398(6) \AA$. This is contrary to the conclusion that resonance form (I) dominates for free benzoylacetone and also contrary to the results of a benzoylacetone-Schiff base complex

Fig. 1. The molecular structure of $\left[\mathrm{Cu}(\mathrm{bzac})(\right.$ bipy $\left.)\left(\mathrm{NO}_{3}\right)\right]$ showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
reported previously, where the $\mathrm{C}-\mathrm{C}$ bond farthest from the phenyl ring is longer than the $\mathrm{C}-\mathrm{C}$ bond closest to it (Xu, Chen, Chen, Miki \& Kasai, 1989).

The crystal of (1) consists of discrete complex molecules. The shortest intermolecular non-bonded contact distance of $3.318(6) \AA$ is between the C5 and C11($-x$, $-y,-z$) atoms.

Experimental

Benzoylacetone (1 mmol) and 2,2'-bipyridine (1 mmol) were dissolved in 10 ml ethanol. The resulting solution was dropped into 10 ml of ethanol solution containing $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(1 \mathrm{mmol})$ with continuous stirring at room temperature. The dark green crystals were obtained after standing for several days.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)-\right.$
$\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$]
$M_{r}=442.92$
Monoclinic
$P 2_{1} / n$
$a=10.471$ (3) \AA
$b=14.347$ (2) \AA
$c=13.290(3) \AA$
$\beta=111.65(2)^{\circ}$
$V=1855.6(8) \AA^{3}$
$Z=4$
$D_{x}=1.59 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(TEXSAN; Molecular
Structure Corporation, 1989)
$T_{\text {min }}=0.525, T_{\text {max }}=0.765$
3607 measured reflections 3421 independent reflections

Refinement

Refinement on F
$R=0.043$
$w R=0.049$
$S=1.23$
2269 reflections
262 parameters
H atoms not refined
$(\Delta / \sigma)_{\text {max }}=0.06$
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)

Weighting scheme based
on measured e.s.d.'s
Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O1}$	$1.915(3)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.341(5)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.907(3)$	$\mathrm{N} 2-\mathrm{C} 16$	$1.344(5)$
$\mathrm{Cu}-\mathrm{O} 3$	$2.335(4)$	$\mathrm{N} 2-\mathrm{C} 20$	$1.334(5)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.988(3)$	$\mathrm{Cl}-\mathrm{C} 2$	$1.507(6)$
$\mathrm{Cu}-\mathrm{N} 2$	$1.982(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.376(6)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.276(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.39(6)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.268(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.494(6)$
$\mathrm{N} 1-\mathrm{Cl1}$	$1.336(5)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.470(5)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$93.7(1)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 15$	$118.8(4)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$	$93.5(3)$	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 16$	$115.2(3)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$93.1(1)$	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 20$	$125.8(3)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2$	$172.5(1)$	$\mathrm{C} 16-\mathrm{N} 2-\mathrm{C} 20$	$119.1(4)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 3$	$89.4(3)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{Cl}$	$114.7(4)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	$165.6(1)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$126.4(4)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$91.1(1)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.9(4)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	$102.9(5)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$124.3(4)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 2$	$92.4(4)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$124.4(4)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$81.0(1)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$114.7(4)$
$\mathrm{Cu}-\mathrm{Ol}-\mathrm{C} 2$	$124.6(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.9(4)$
$\mathrm{Cu}-\mathrm{O} 2-\mathrm{C} 4$	$126.4(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.5(4)$
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{Cl1}$	$126.1(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$119.0(4)$
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 15$	$115.0(3)$		

The title structure was solved by direct methods and refined anisotropically for all non-H atoms by full-matrix least squares. The H -atom sites were obtained from a difference Fourier map and not refined. All computations were performed on a MicroVAX 3100 computer.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1989). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976).

This study is supported by The Natural Science Foundation of Zhejiang Province and The National Natural Science Foundation.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: KHll08). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gorodetsky, M., Luz, Z. \& Mazur, Y. (1967). J. Am. Chem. Soc. 89, 1183-1189.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Jones, R. D. G. (1976). Acta Cryst. B32, 2133-2136.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Winter, W., Zeller, K. P. \& Berger, S. (1979). Z. Naturforsch. Teil B, 34, 1606-1611.
Xu, D., Chen, B., Chen, K., Miki, K. \& Kasai, N. (1989). Bull. Chem. Soc. Jpn, 62, 2384-2386.

Acta Cryst. (1997). C53, 301-302

(Acetonitrile- N) (η^{5}-cyclopentadienyl)bis(tri-phenylphosphine-P)ruthenium(II) Tetrafluoroborate

Olinda Y. Carreón, ${ }^{a}$ Marco A. Leyva, ${ }^{a}$ Juan M. Fernández-G. ${ }^{b}$ and Alain Pénicaud ${ }^{a} \dagger$
${ }^{a}$ CINVESTAV, Departamento de Química, Apartado Postal 14-740, 07000 México DF, México, and ${ }^{b}$ Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán 045IO, México DF, México. E-mail: penicaud@crpp.u-bordeaux.fr

(Received 15 July 1996; accepted 4 November 1996)

Abstract

The title compound, $\left[\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right\}_{2}\right]-$ BF_{4}, crystallizes with C_{1} local point group symmetry. The Ru-P distances are 2.343 (1) and 2.365 (1) \AA, and the $\mathrm{Ru}-\mathrm{N}-\mathrm{C}$ angle is $169.8(5)^{\circ}$.

Comment

While investigating the reactivity of $\left[\mathrm{Ru}(\mathrm{Cp})\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}-\right.\right.$ $\left.\mathrm{P}\}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{+}$(Cp is cyclopentadienyl), we obtained single crystals of its tetrafluoroborate salt, (I). A search of the literature yielded few structurally characterized acetonitrile-Ru derivatives (Crocker, Green, Orpen \& Thomas, 1984; Crocker et al., 1987; Luginbühl et al., 1991; McCormick, Cox \& Gleason, 1993; Kirchner, Taube, Scot \& Willett, 1993), which prompted us to carry out the present crystal structure determination.

(I)

The title Ru complex does not exhibit mirror symmetry. The angles around the Ru atom are Pl -$\mathrm{Ru}-\mathrm{N} 189.8(1), \mathrm{P} 2-\mathrm{Ru}-\mathrm{N} 192.2(1), \mathrm{P} 1-\mathrm{Ru}-\mathrm{P} 2$
\dagger Current address: Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux-I, Avenue Schweitzer, F-33600 Pessac, France.
101.16(3), $C p-\mathrm{Ru}-\mathrm{P} 1$ 124.0, $C p-\mathrm{Ru}-\mathrm{P} 2120.4$ and $C p-\mathrm{Ru}-\mathrm{N} 1121.3^{\circ}$ (where $C p$ is the Cp centroid). The average distance from the Ru atom to the C atoms of the Cp ligand is $2.206 \AA$, while the $\mathrm{Ru}-C p$ distance is $1.848 \AA$ and the average $C-C$ bond length in the Cp ligand is $1.416 \AA$. The $\mathrm{Ru}-\mathrm{N}-\mathrm{C} 6$ angle is $169.8(5)^{\circ}$, showing a significant deviation from perfect linear coordination. The $\mathrm{Ru}-\mathrm{P}$ distances are significatively different, albeit ${ }^{31} \mathrm{P}$ NMR shows one signal only at 42.48 p.p.m. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ solution). The overall slight dissymmetry of the complex is reminiscent of the situation found in $\left[\mathrm{Ru}(\mathrm{Cp})\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{C}_{4}\right\}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{+}$(Crocker et al., 1984), who ascribe the asymmetric coordination of the $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{C}_{4}$ ligand to the metal centre to the nature of the frontier orbitals of the $\mathrm{Cp}-\mathrm{Ru}(\mathrm{MeCN})^{+}$fragment. Also noteworthy are the high displacement parameters of the acetonitrile group likening it to a weakly bound pendulum. This, in fact, is an 'X-ray photograph' of the leaving group character of the acetonitrile ligand.

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The synthesis of (I) was carried out by stirring stoichiometric amounts of $\left[\mathrm{Ru}(\mathrm{CP})\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right\}_{2} \mathrm{Cl}\right]$ (Bruce, Hamester, Swincer \& Wallis, 1982) with AgBF_{4} in acetonitrile at room temperature overnight. After filtering out AgCl , the solution was evaporated to dryness and the yellow solid recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-heptane ($1: 5$). Single crystals were obtained by slow evaporation of a degassed toluene- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) solution under an inert atmosphere over a period of 15 d .

Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)-\right.$	Mo $\mathrm{K} \alpha$ radiation
$\left(\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{P}_{2}\right)_{3} \mathrm{BF} \mathrm{BF}_{4}$	$\lambda=0.71069 \AA$
$M_{r}=818.60$	
Monoclinic	Cell parameters from 24
P_{1} / c	reflections
	$\theta=11-12^{\circ}$

$\left[\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)-\right.$
$\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}_{2}\right]_{3} \mathrm{BF}_{4}$
$M_{r}=818.60$
P_{1} / c

> Mo $K \alpha$ radiation $\lambda=0.71069 \AA$ Cell parameters f \quad reflections $\theta=11-12^{\circ}$

[^0]: \dagger On leave from the Hangzhou Institute of Commerce as a visiting scholar.

